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Critical behaviour of the four-dimensional spin glass in
magnetic field

Enzo Marinari†, Carla Naitza‡ and Francesco Zuliani§
Dipartimento di Fisica and INFN, Università di Cagliari, Via Ospedale 72, 09100 Cagliari, Italy

Received 26 February 1998

Abstract. We present numerical simulations of the four-dimensional Edwards Anderson Ising
spin glass with binary couplings. Our results, in the midst of strong finite-size effects, suggest
the existence of a spin-glass phase transition. We present a preliminar determination of critical
exponents. We discuss spin-glass susceptibilities, cumulants of the overlap and energy overlap
probability distributions, finite-size effects, and the behaviour of the disorder-dependent and
integrated probability distributions.

1. Introduction

The Edwards–Anderson model of spin glasses [1] turns out, not astonishingly, to be hard to
be understood. More surprisingly (at the start) also the Sherrington Kirkpatrick mean-field
version of the model [2] appears to be very complex. Many unprecedented features appear:
for example the (spin-glass) phase transition survives the presence of a finite magnetic field
[3] under the de Almeida-Thouless (AT) line. The Parisi replica symmetry breaking (RSB)
solution [4] appears to describe accurately the model in the lowT broken phase (and it is
believed to be the real solution of the model).

The relevant question is now trying to establish how many of the features of the Parisi
solution survive when discussing finite-dimensional spin-glass models. For example the
presence of a phase transition in a finite magnetic field, that is implied by the Parisi solution
[4], is not compatible with the point of view of thedroplet model[5], where one expects
the transition to be removed from the action of a small magnetic field.

As usual in a complex theoretical scenario, numerical simulations try to play a part (for
a review of recent simulations of spin-glass models see [6]). Here we will report numerical
simulations that thermalize large lattices with a large number of samples: we will try to
show many signatures hinting about the presence of a phase transition, and we will be
plagued by large finite-size effects.

Numerical simulations of spin glasses with non-zero magnetic field are now well known.
Maybe the first work on the subject is the one by Sourlas [7, 8]. The numerical simulations
of [9, 10] (see also the criticism in [11] and the reply [12]) use the concept of energy overlap,
that turns out to be very relevant in this study: these simulations give a first evidence, but the
computers of the time allowed too small lattices for getting conclusive results. Simulations
of [13] measure constant susceptibility curves [14], and detect the existence of an AT line.
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On the contrary, the work of [15] does not detect one, whilst [16–18] are more on the yes
side. Again, the work of [19] is negative on the existence of a transition, while [20] claims
the difficulty of establishing a firm conclusion (maybe a wise approach). Finally, recent
numerical work using a dynamic approach has been able to claim, again, the existence of a
clear transition to a spin glass phase [21, 22].

Here, as we will explain in the following sections, we will find evidence that we
consider strongly suggestive of the existence of a phase transition, and we will present
very preliminary determinations of critical exponents. We will also find that even on large
lattices (on current standards) finite-size effects are dramatically strong, and we will discuss
them in detail.

2. Numerical simulations

In this section we shall discuss the four-dimensional (4D) Edwards–Anderson spin-glass
system [1] with bimodal quenched random couplingsJ = ±1. Our numerical simulations
have been using theparallel temperingapproach [23], which makes a real difference in the
simulations of systems with quenched disorder. The interested reader will find for example
in the last of [23] an introduction to optimized Monte Carlo methods (including tempering
and, more in general, the multi-canonical approaches).

The model Hamiltonian is

H = −
∑
〈i,j〉

σiJi,j σj − h
∑
i

σi (1)

where the first sum runs over first neighbouring sites on a 4D lattice and theJ are
binary quenched random couplings.β = 1/T is the inverse couplings that multiplies
the Hamiltonian in the Boltzmann weight.

In table 1 we report the parameters relevant for our tempered simulations: for each
lattice size we give the number of discarded thermalization sweeps and of the sweeps
used for measurements, the total number of samples that we have analysed, the number of
temperatures used in each tempered run (i.e. the number of copies of the system updated in
parallel at differentβ values and among which the temperature values have been swapped),
the temperature increment, the minimum and maximum temperatures.

We have taken a magnetic fieldh = 0.4. We know from former work that this value
is large enough to make the transition clearly different from theh = 0 pure case, but not
large enough to cross the AT line (for a more detailed discussion of this point see [21] and
references therein).

The β values have been chosen, as customary and reasonable, in order to keep the
acceptance factor of the temperingβ swap of order12. In our case we have aβ acceptance
ratio close to 0.8 forL = 3 that goes down to a number close to 0.6 atL = 9.

Table 1. Parameters of the tempered Monte Carlo runs.

L Thermalization Equilibrium Samples Nβ δT Tmin Tmax

3 20 000 20 000 2560 19 0.1 1.0 2.8
5 80 000 80 000 1920 19 0.1 1.0 2.8
7 200 000 200 000 960 46 0.04 1.0 2.8
9 150 000 150 000 64 66 0.04 1.0 3.6
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Our runs are surely well thermalized forL 6 7: for each copyβ has visited all possible
values at least a few times, and the system has never been stuck.L = 9 is more delicate,
and we are not sure that the data points with lowerT values are fully thermalized: we
have repeated different trial runs, with different values of the parameters, and the one we
report here are those that turn out to be better thermalized. The differences among the
different runs were mainly minor, and a possible remanence of on thermalization effects
would affect only minor issues that we will point out in the following. Here we will only
insist on features that are surely representing thermal equilibrium even on theL = 9 lattice.

3. Spin-glass susceptibilities

In this section we will discuss the overlap and the energy overlap susceptibilities. We will
show the signature of a spin-glass-like phase transition. We will discuss the location of the
critical temperature and the determination of the critical exponents.

We consider two real replicas of the system with spinsσi andτi , and the local energy
operator

ε
(σ)
i ≡

1

2D
σi
∑
j

Ji,j σj (2)

where the sum runs over first neighbours of the sitei (on a 4D hypercubic lattice of linear
sizeL and volumeV = L4). The overlapoperator is defined as

q ≡ 1

V

∑
i

σiτi (3)

and theenergy overlapoperator as

qE ≡ 1

V

∑
i

ε
(σ )
i ε

(τ)
i . (4)

This operator plays a crucial role, since it allows us to distinguish a possible trivial RSB
from a non-trivial breaking. In the mean-field RSBqE andq2 coincide, while a non-trivial
behaviour ofq induced by the presence of interfaces would generate a trivialqE . Detecting
a non-trivial behaviour ofqE is strong evidence for a RSB-like behaviour. We will consider
the probability distribution of the overlap for a given sample of the quenched disorder,
PJ (q), and the same for the energy overlap,PEJ (q). We will call P(q) and PE(q) the
probability distribution integrated over the quenched disorder.

We define theoverlap susceptibilityas

χq ≡ V (E(q2)− E(q)2) (5)

where byE( ·) we denote the combined operation of a thermal average and an average over
the quenched disorderJ (in the usual notationE( ·) = 〈 ·〉). We define theenergy overlap
susceptibilityas

χqE ≡ V (E(q2
E)− E(qE)2). (6)

In figure 1 we plot the overlap susceptibilityχ as a function ofT for L = 3, 5, 7 and
9, and in figure 2 we plot the energy overlap susceptibilityχE . The statistical errors are
computed using a jack-knife algorithm.

Both susceptibilities show a divergence in the lowT region. The comparison of figure 1
with the analogous plot of [20] shows a difference: we do not see a cusp but a clear
divergence (not only forL = 7 but also forL = 9 down toT = 1.0). We believe this is
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Figure 1. χ as a function ofT . Open squares:L = 9,
asterisks:L = 7, crosses:L = 5 and horizontal bars:
L = 3.

Figure 2. As in figure 1 but forχqE .

very well explained from some non-complete thermalization for the larger lattices of [20]
(this possibility is proposed and discussed in [20] itself: a non-complete thermalization
has exactly the effect of smoothing the divergence, since correlations on large scale cannot
be created): these measurements are very delicate. As we have already discussed we are
completely safe as far as theL = 7 lattice is concerned, butL = 9 was clearly our limit.
It is important to stress that this is the only point of discrepancy with [20]: as far as other
(less sensitive) quantities are concerned (and even for the susceptibility on the two smaller
lattice sizes) we find exactly the same results. However, [20] does not analyse the quantities
based on the energy overlap.

As we have said, the divergence of the two susceptibilities is clear. We are able to
follow the divergence on thermalized lattices down toT = 1.0. The fact that the energy
overlap susceptibility also diverges makes a stronger case for a RSB-like spin-glass phase.
The analysis of [21] hints that ath = 0.4 is close or slightly lower than 1.5. We just note
at this point that the data of figures 1 and 2 are fully compatible with this value.

In figures 1 and 2 one can see that there is a temperature region where the behaviour
is asymptotic (i.e. measurements on theL = 9 lattice are compatible with those taken on
smaller lattices). We use this region to fit the susceptibility as a function of the reduced
temperature T

T−Tc , with

χq(t) ' Aqt−γ
χqE (t) ' AqE t−γε .

(7)

We will use the valueTc = 1.4 (in agreement with the results of [21] and with evidence
that will be discussed later in this note). The fits in the region ofT going from 2.1 to 2.6
(that we show in figure 3) giveγ = 1.97 andγε = 1.93. χq has a strongerL dependence
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thanχqE . We plot in figure 3 the logarithm ofχq andχqE versus log(t), and the best fits to
the form (7).

The conclusion of this analysis is that the numerical data are compatible with a
divergence atTc ' 1.4 with an exponentsγ andγε close to 2. It is interesting to notice that
the zero-field exponents from [24] and references therein found a value ofγ very similar
to our value in field.

We have also carried out a standard finite-size scaling analysis, by selectingTc and the
critical exponents in such a way that curves at different lattice size collapsing together as
well as possible. As usual for not very accurate data (as is unfortunately frequently the case
for numerical simulations of complex systems) this analysis does not give unambiguous
results, but only hints reasonable and preferred set of values. We use forχq the leading
scaling form

χq = L
γ

ν χq(L
1
ν (T − Tc)) (8)

and the same form forχqE . By looking atχq we find thatTc = 1.4, 1
ν
= 0.7 and γ

ν
= 1.3

give a very good fit. The same values (withγε = γ ) also give a very good scaling behaviour
for χqE .

If one took a higher value ofTc (that could be suggested by a possible interpretation of
the crossover regime we will discuss in the next section, but is discouraged by the dynamical
data of [21]), for exampleTc = 1.8, we would find a higher value ofν, of the order of
2, and γ

ν
' 1. Again, the finite-size scaling analysis and the study of the asymptoticT

dependence would be consistent at this effect.

Figure 3. Log(χq) and best fit to a power law (full
line) and log(χqE ) and best fit to a power law (broken
line) versus the logarithm of the reduced temperature.

Figure 4. As in figure 1 but for the overlap kurtosisg.
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4. Skewness and kurtosis

In order to qualify the probability distribution of the overlap and of the energy overlap
we will define and analyse their kurtosis (the Binder cumulant) and their skewness. For
zero-field deterministic and disordered statistical systems the Binder cumulantg of the order
parameter is a very good signature of the phase transition: curves ofg versusT cross at the
critical point, since the kurtosis of the probability distribution of the order parameter at the
critical point is an universal quantity. In the infinite volume limitg goes to 0 in the warm
phase: it goes to 1 in a ferromagnetic phase, and to a non-trivial function in the broken
phase of the Parisi RSB solution of the mean-field spin glass theory.

Here, since we have a non-zero magnetic field, we have to consider connected
expectation values. We define the overlap kurtosis on a lattice of linear sizeL as

g(T ) ≡ 3

2
− 1

2

E((q − E(q))4)
E((q − E(q))2)2 ≡

3

2
− 1

2

χ(2)q

χ2
q

(9)

which definesχ(2)q . We define the kurtosis for the energy overlapgε in the analogous way,
by usingqE . We define the skewness of the probability distribution of the overlap as

s(T ) ≡ E((q − E(q))3)
E((q − E(q))2)3/2 ≡

χ
(3/2)
q

χ
3/2
q

(10)

which definesχ(3/2)q . In the definition of the skewness of the energy overlap probability
distributionsε one substitutesqE into q. We note now that the study of theqE probability
distribution turns out to be very important. We plotg(T ) for the four different lattice
volumes in figure 4). In this and following plots errors are from sample-to-sample
fluctuations evaluated with a jack-knife analysis.

The difference with the usual zero-field picture is strong. There is a clear change of
regime close toT = 2 (the critical point ath = 0). TheL = 3 system is small and
different, and never really Gaussian in ourT range. ForL > 5 g becomes non-trivial when
T becomes smaller than 2. Theq-kurtosis in this region does not change much with size.
In the statistical error the values of theL = 5, 7 and 9 lattice are compatible (but maybe
at T ' 1 where also small non-equilibrium effects have to be accounted for). The fact
that the kurtosis only has a smallL dependence (that we do not see but could be hidden
by the large statistical errors) and is non-trivial is very clear from our data. Again, the
traditional crossing behaviour is completely absent (likely even in the infinite-volume limit)
in our data. Two things must be stressed here: first, that the existence or non-existence of
a crossing also depends from the shape of the critical asymptotic probability distribution,
and second that we cannot exclude, and on the contrary we clearly detect (see for example
figure 5) the existence of very strong finite-size effects.

Figure 5, where we plot the energy overlap kurtosis, is dramatically and delightfully
different from figure 4. It is already very interesting to look at the highT region: here only
theL = 9 lattice starts to be Gaussian, while smaller lattices have a strongly non-Gaussian
behaviour. In the cold region again there is a strong finite-size dependence (in the next
section we will see that there is a finite-size double peak structure that is disappearing on
large lattices). Here there is a crossing, even if it is inverted as compared with usual,h = 0
systems, where in the warm phase the kurtosis curves become lower with increasing lattice
size: in our case for small sizes and highT we have a negative kurtosis, that tends to
zero from below when the size increases. This real, inverted crossing is atT higher than
1.5, but we believe it should be takencum grano salisas far as the exact determination
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Figure 5. As in figure 1 but for the energy overlap
kurtosisgε .

Figure 6. As in figure 1 but for the overlap skewnesss.

of the critical point is concerned. The finite-size effects make themselves clear in the non-
Gaussian behaviour in the warm phase, and in a peak in the cold phase, that shrinks and
shifts with increasing lattice size (see figure 5). A value ofTc ' 1.5 is very compatible
with this picture.

The behaviour of the skewness for the overlap (figure 6) and for the energy overlap
(figure 7) repeats a similar pattern. We find a symmetric behaviour of the overlap in the
warm phase, and curves collapse to a non-trivial shape in the lowT regime. The energy
overlap skewness, on the contrary, starts to become zero in the warm region only on our
larger lattice,L = 9, and heavily depends onL in the lowT region. Again a peak close to
T ' 2 is shrinking with increasing lattice size.

In the next section we will discuss the full probability distribution. The analysis we
have discussed here strongly suggests the existence of a RSB phase. We have been able to
get hints for the value ofTc and of the critical exponents, but such estimates, that surely
improve on existing ones, have to be considered only as hints.

5. Probability distributions

Before starting a detailed discussion of the behaviour of the probability distribution of the
order parameter for a given samplePJ (q) and of the disorder averagedP(q) we briefly
discuss finite-size effects on, for example,〈q〉L. We have analysed the size dependence of
〈q〉L and〈qE〉L.

We notice here that the probability distributions that we show in figures 10–13 (and that
we will discuss better in the following) make clear the presence of strong finite-size effects
affecting the mean value of the overlap.
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Figure 7. As in figure 1 but for the energy overlap
skewnesssε .

We have tried a fit of the type (see [17] for a detailed discussion of the issue)

〈q〉L ' 〈q〉∞ + A

Ldq

〈qE〉L ' 〈qE〉∞ + AE

LdqE
.

(11)

In the Parisi solution of the mean-field theorydq = dqE : corrections that scale asV −1/3 and
the fact that the upper critical dimension is 6 imply that in the mean-field limit we expect
dq = 2. As a function of the exponentsγ andν one has that 2dq = 4− γ /ν.

We find that for the overlap the best fit todq (usingL = 3, 5, 7 and 9) increases withT
from 2.3±0.5 atT = 1.0 to 3.2±0.2 atT = 1.6, and to a number larger than 4 forT among
2 and 3 (forT > Tc we expect an exponential decay, but on a finite lattice with a finite
number of points we can fit an effective exponent).dqE is larger: here finite-size effects are
smaller, and the exponent more difficult to determine. In the region ofT = 1.6, 1.8, 2.0 we
find an exponent close to 4, that increases in the highT region. For example atT = 1.6,
that asymptotically is probably marginally off-critical but very close to the estimatedTc,
where we have a clear determination of both exponents, we have a ratio

dqE
dq
' 4

3 (to be
compared with the 1 that one finds in the mean-field theory). The behaviour of〈q〉L does
not look compatible with a pure exponential, while〈qE〉L would also be compatible with
an exponential decay. We stress again that since the expected finite-size corrections have
a very complex pattern (different terms could be leading for differentL values) the exact
theoretical significance of this numerical result is not clear (see [17] for a discussion), but
for the fact that we find that the two exponents are not very different from those that are
found in mean field. For a comparison of the equilibrium valueE(q), and the dynamical
value of the overlap,qD, see figure 2 of [21] (our data forE(q) are very similar to those
of [20]).

Let us examine in further detail now the fullP(q) and PE(q) and the probability
distributions for a given sample,PJ (q) andPEJ (q). In figure 8 we plotP(q) at L = 9 for
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Figure 8. P(q) at L = 9 for differentT values: from
the left are the curves forT = 2.4, 2.2, 2.0, 1.6, 1.4,
1.2, 1.0.

Figure 9. As in figure 8 but forPE(q).

differentT values. AtT = 2.4P is Gaussian and symmetric. For lowerT values we get a
strong deviation from a Gaussian behaviour. We will discuss later the fact that finite-volume
effects are very strong (and they turn out to be the most serious limitation in the case of the
simulations we are discussing here). We can already notice that atT = 1 from the results
of [21] we expect that the minimum value allowed for the overlap isqmin ' 0.55. On the
contrary even on our larger size,L = 9, we get a long tail that basically goes down to
q = 0 (we will see later that it goes down to−1 for the smaller lattice sizes).

A very similar pattern holds forPE(q) in figure 9. Here even atL = 9 and atT = 2.4
(deep in the warm phase) the probability distribution is not yet fully Gaussian (as one can
also see from the kurtosis and the skewness). As forP(q) the distribution becomes very
asymmetric at lowT , with a large tail towards small overlaps.

It is interesting to analyse in more detail the size dependence of the probability
distributions. In figure 10 we showP(q) versusq at T = 2.0 for L = 3, 5, 7 and 9.
This is the point of the transition in theh = 0 model, asymptotically in the warm region
for h = 0.4. Clearly forL = 3 the distribution is far from Gaussian: only atL = 7 one
sees a Gaussian behaviour.

The same function at lowT is very different. We showP(q) versusq at T = 1.0 in
figure 11. Also, here finite-size effects are very large, butP(q) does not show any sign of
convergence to a Gaussian behaviour. In the mean-field RSB solution one would expect a
δ-function atqmin (that, as we already said, atT = 1.0 is close to 0.55 [21]): here, at least
for L < 9, we do not see aδ-function-like contribution atq < qmax. Only atL = 9 we see
a small bump atq ' 0.2: we see it in all our different runs, but we cannot exclude (and on
the contrary we believe it is possible) that it is due to a lack of complete thermalization of
theL = 9 data at the lowerT values (as we have discussed even if quantities such as〈q2〉
are well behaved and apparently thermalized we cannot completely exclude a very small
effect of this kind). Also we will discuss a similar effect, that turns out to be due to the
finite size of the lattice, for the energy overlap.

In figure 12 we showPE(qE) versusq at T = 2.0 for L = 3, 5, 7 and 9. Again, on
small lattices even at warmT PE is not symmetric (the tail is in this case for large values
of the overlap).

In figure 13 we show that in the cold region (T = 1) the energy overlap has even
stronger finite-size effects than the spin–spin overlap. Here a spurious peak at low values
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Figure 10. P(q) versusq at T = 2.0 for L = 3, 5, 7
and 9 (curves from bottom to top).

Figure 11. As in figure 10 butT = 1.0.

Figure 12. As in figure 10 butPE . Figure 13. As in figure 10 butPE andT = 1.0.

Figure 14. A first PJ (q) for one disorder sample,
L = 9 andT = 1.

Figure 15. A secondPJ (q) for a different disorder
sample,L = 9 andT = 1.

of qE is very strong for smallL values (it carries 30% of the weight atL = 3), and becomes
smaller and smaller on larger lattices.

We also show, in figures 14 and 15 two individualP(q) for two different realizations
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of the quenched disorder atL = 9, T = 1. It is clear that different samples can have a very
different equilibrium probability distribution, and the system does not look self-averaging.
In the two examples we show, for example, that it is clear that, like in mean-field theory,
we can find systems with one maximum ofP(q) and systems with a complex structure of
P(q), with many local maxima. The integratedP(q) is not originated from a trivial sum of
very similar individualPJ (q), but from the sum of individual very different distributions.
It is clear that this feature, crucial in the RSB mean field picture, is shared by the finite-
dimensional system in a non-zero magnetic field.

6. Conclusions

We have discussed accurate numerical simulations of the 4D Edwards Anderson spin glass in
magnetic field. Our results hint very strongly the existence of a spin glass phase transition.
Susceptibilities grow strongly at lowT , and fits to a divergent behaviour are very good.
Cumulants of the overlap and energy overlap probability distribution such as the kurtosis
and skewness show a clear change of regime in the region of temperatures lower than the
h = 0 critical point. Finite-size effects are dominated by power laws that are similar to
those of the mean-field theory. Probability distributions are non-trivial in the lowT region,
and, what is most important, different samples clearly behave in very different ways. The
energy overlap follows the usual overlap in this RSB-like behaviour, making the possibility
of a non-trivial behaviour caused by interfaces quite unplausible.

This work substantiates the results of [21, 22]: we are using here a very different
approach (since we look at systems at thermal equilibrium, while these two papers look at
systems out of equilibrium). Apart from the discrepancy about the susceptibility (clearly
due, in our view, to a marginal lack of thermalization of [20]) our raw data mainly agree,
where in common, with those of [20], but our larger statistical sample gives us the possibility
of a better precision.

There are also differences with the usual RSB-like approach ath = 0. For example here
the Binder cumulants do not cross (and the pictures of theP(q) show why). What is more
impressive and relevant is the presence of very strong finite-size effects (even on lattices
of sizeL4 = 94, that had never before been thermalized in a numerical simulation). These
effects are far larger than in theh = 0 case. These are the most important limitations of
the present numerical simulation (and of the physics conclusions one can draw from them):
when finite-size effects are as strong as we have shown is very difficult to be sure that any
asymptotic behaviour has been observed. Owing to this all the quantitative results we quote
for critical exponents and temperatures have to be taken as simple indications. The other
real problem, as far as the coincidence with the RSB mean-field approach is concerned,
is that even forL = 9 we do not see any trace of aδ-function atq = qmin: even if on
theoretical grounds we expect this peak to be smaller than the one atqmax [17], and if we
know that finite-size effects are very strong, and if we have a small bump inP(q) atL = 9
at low q (that we cannot take too seriously), this a worrying point, that is there to demand
further clarification.
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